## Generalized Optimised Schwarz Method for arbitrary non-overlapping subdomain partitions

X.Claeys<sup>†</sup> & E.Parolin<sup>\*</sup>

- <sup>†</sup> Laboratoire Jacques-Louis Lions, Sorbonne Université INRIA Paris, équipe Alpines
- \* POems, UMR CNRS/ENSTA/INRIA, ENSTA ParisTech



#### Scattering in heterogeneous medium

wave number :  $\kappa : \mathbb{R}^d \to \mathbb{C}$  bounded  $\Re e\{\kappa(\mathbf{x})\} \ge 0, \Im m\{\kappa(\mathbf{x})\} \ge 0, \kappa(\mathbf{x}) \neq 0$ source :  $f \in L^2(\Omega)$ 

#### Non-overlapping partition

$$\begin{split} \Omega &= \overline{\Omega}_1 \cup \dots \cup \overline{\Omega}_J, \\ \Gamma_j &:= \partial \Omega_j, \ \ \Gamma'_j &:= \Gamma_j \setminus \partial \Omega \\ \Omega_j &: \text{Lipschitz, bounded} \end{split}$$

Helmholtz bvp  $-\Delta u - \kappa (\mathbf{x})^2 u = f \text{ in } \Omega,$  $\partial_n u - \imath \kappa u = 0 \text{ on } \partial \Omega.$ 

$$\iff$$





**local sub-problems**  $j = 1 \dots J$  $-\Delta u - \kappa^2 u = f$  in  $\Omega_j$  $\partial_n u - \imath \kappa u = 0$  on  $\partial \Omega_j \cap \partial \Omega$ .

+

**transmission conditions**  $\partial_{n_j} u|_{\Gamma_j}^{\text{int}} = -\partial_{n_k} u|_{\Gamma_k}^{\text{int}}$  $u|_{\Gamma_j}^{\text{int}} = u|_{\Gamma_k}^{\text{int}} \quad \forall j, k$ 

## Optimized Schwarz Method (OSM) [Després, 1991]

Optimized Schwarz Method (OSM) is one of the most established DDM approaches for wave propagation. This is a substructuring method where transmission conditions are imposed through each interface by means of Robin traces involving impedance coefficients.

- operator valued impedance : [Collino, Ghanemi & Joly, 2000]
- second order TC : [Gander, Magoules & Nataf, 2002]
- DtN-like impedance : [Nataf, Rogier & de Sturler, 1995], [Antoine, Boudendir & Geuzaine, 2012], [Antoine, Bouajaj & Geuzaine, 2014]
- large literature : overview article [Gander & Zhang, 2019]

#### **Cross point issue**

Unappropriate treatment of cross-points may spoil convergence so care must be paid to this issue : [Gander & Kwok, 2013], [Gander & Santugini, 2016], [Després, Nicolopoulos & Thierry, 2020], [Modave, Antoine, Geuzaine & al, 2019 & 2020]. There is also a variant of FETI-DP "à la Després" [Farhat & al, 2005], [Bendali & Boubendir, 2006].

## Outline

#### I Review of the Optimized Schwarz Method

#### II New manner to enforce transmission condition

**III Numerical results** 

## Outline

#### I Review of the Optimized Schwarz Method

II New manner to enforce transmission conditions

**III Numerical results** 

**Transmission conditions :** with scalar  $\Lambda > 0$ ,

$$\begin{array}{ll} \partial_{n_j} u|_{\Gamma_j} = -\partial_{n_k} u|_{\Gamma_k} & +\partial_{n_j} u|_{\Gamma_j} + \imath \Lambda u|_{\Gamma_j} = \\ u|_{\Gamma_j} = u|_{\Gamma_k} & \longleftrightarrow & -\partial_{n_k} u|_{\Gamma_k} + \imath \Lambda u|_{\Gamma_k} \\ & \text{on } \Gamma_j \cap \Gamma_k \, \forall j, k & \text{on } \Gamma_j \cap \Gamma_k \, \forall j, k \end{array}$$

$$\Rightarrow \underbrace{ (\partial_{n_j} u|_{\Gamma'_j} - \imath \Lambda u|_{\Gamma'_j})_{j=1}^{\mathrm{J}} = }_{-\prod_0 ((\partial_{n_k} u|_{\Gamma'_k} + \imath \Lambda u|_{\Gamma'_k})_{k=1}^{\mathrm{J}})}$$

where the operator  $\Pi_0$  swaps traces on both sides of each interfaces :  $(v_0, \ldots, v_J) = \Pi_0(u_0, \ldots, u_J) \iff v_j = u_k \text{ on } \Gamma_j \cap \Gamma_k.$ 

#### Local scattering operators :

$$\begin{split} \mathrm{S}_{\mathbf{0}}^{\mathbf{I}_{j}}(\partial_{n_{j}}\psi|_{\Gamma_{j}^{\prime}}-\imath\Lambda\psi|_{\Gamma_{j}^{\prime}}) &:= \partial_{n_{j}}\psi|_{\Gamma_{j}^{\prime}}+\imath\Lambda\psi|_{\Gamma_{j}^{\prime}}\\ \text{for } \Delta\psi+\kappa^{2}\psi=0 \text{ in } \Omega_{j}\\ \partial_{\mathbf{n}}\psi-\imath\kappa\psi=0 \text{ on } \partial\Omega_{j}\cap\partial\Omega \end{split}$$

Wave equations :  $(\partial_{n_j} u|_{\Gamma'_j} + \imath \Lambda u|_{\Gamma'_j})_{j=1}^{J} =$   $S_0((\partial_{n_k} u|_{\Gamma'_k} - \imath \Lambda u|_{\Gamma'_k})_{k=1}^{J}) + g$ with  $S_0 := \operatorname{diag}_{j=1...J}(S_0^{\Gamma_j}).$ 

**Transmission conditions :** with scalar  $\Lambda > 0$ ,

$$\begin{array}{ll} \partial_{n_j} u|_{\Gamma_j} = -\partial_{n_k} u|_{\Gamma_k} & +\partial_{n_j} u|_{\Gamma_j} + \imath \Lambda u|_{\Gamma_j} = \\ u|_{\Gamma_j} = u|_{\Gamma_k} & \longleftrightarrow & -\partial_{n_k} u|_{\Gamma_k} + \imath \Lambda u|_{\Gamma_k} \\ & \text{on } \Gamma_j \cap \Gamma_k \, \forall j, k & \text{on } \Gamma_j \cap \Gamma_k \, \forall j, k \end{array}$$

$$\Rightarrow \underbrace{ (\partial_{n_j} u|_{\Gamma'_j} - \imath \Lambda u|_{\Gamma'_j})_{j=1}^{\mathrm{J}} = }_{-\prod_0 ((\partial_{n_k} u|_{\Gamma'_k} + \imath \Lambda u|_{\Gamma'_k})_{k=1}^{\mathrm{J}})}$$

where the operator  $\Pi_0$  swaps traces on both sides of each interfaces :  $(v_0, \ldots, v_J) = \Pi_0(u_0, \ldots, u_J) \iff v_j = u_k \text{ on } \Gamma_j \cap \Gamma_k.$ 

#### Local scattering operators :

$$\begin{split} \mathrm{S}_{\mathbf{0}}^{\mathbf{I}_{j}}(\partial_{n_{j}}\psi|_{\Gamma_{j}^{\prime}}-\imath\Lambda\psi|_{\Gamma_{j}^{\prime}}) &:= \partial_{n_{j}}\psi|_{\Gamma_{j}^{\prime}}+\imath\Lambda\psi|_{\Gamma_{j}^{\prime}}\\ \text{for } \Delta\psi+\kappa^{2}\psi=0 \text{ in } \Omega_{j}\\ \partial_{\mathbf{n}}\psi-\imath\kappa\psi=0 \text{ on } \partial\Omega_{j}\cap\partial\Omega \end{split}$$

Wave equations :  $(\partial_{n_j} u|_{\Gamma'_j} + \imath \Lambda u|_{\Gamma'_j})_{j=1}^{J} =$   $S_0((\partial_{n_k} u|_{\Gamma'_k} - \imath \Lambda u|_{\Gamma'_k})_{k=1}^{J}) + g$ with  $S_0 := \operatorname{diag}_{j=1...J}(S_0^{\Gamma_j}).$ 

stems from the source term of the bvp

**Transmission conditions :** with scalar  $\Lambda > 0$ ,



$$(\partial_{n_j} u|_{\Gamma'_j} - \imath \Lambda u|_{\Gamma'_j})_{j=1}^{\mathbf{J}} = -\prod_0 ((\partial_{n_k} u|_{\Gamma'_k} + \imath \Lambda u|_{\Gamma'_k})_{k=1}^{\mathbf{J}})$$

where the operator  $\Pi_0$  swaps traces on both sides of each interfaces :  $(v_0, \ldots, v_J) = \Pi_0(u_0, \ldots, u_J) \iff v_j = u_k \text{ on } \Gamma_j \cap \Gamma_k.$ 

Local scattering operators : 
$$\begin{split} S_{0}^{\Gamma_{j}}(\partial_{n_{j}}\psi|_{\Gamma_{j}^{\prime}}-\imath\Lambda\psi|_{\Gamma_{j}^{\prime}}) &:= \partial_{n_{j}}\psi|_{\Gamma_{j}^{\prime}}+\imath\Lambda\psi|_{\Gamma_{j}^{\prime}} \\ \text{for } \Delta\psi+\kappa^{2}\psi=0 \text{ in } \Omega_{j} \\ \partial_{n}\psi-\imath\kappa\psi=0 \text{ on } \partial\Omega_{j}\cap\partial\Omega \end{split}$$
 Wave equations :  $(\partial_{n_j} u|_{\Gamma'_j} + \imath \Lambda u|_{\Gamma'_j})_{j=1}^{J} =$   $S_0((\partial_{n_k} u|_{\Gamma'_k} - \imath \Lambda u|_{\Gamma'_k})_{k=1}^{J}) + g$ with  $S_0 := \operatorname{diag}_{j=1\dots J}(S_0^{\Gamma_j}).$ 

**Transmission conditions :** with scalar  $\Lambda > 0$ ,

$$\partial_{n_j} u|_{\Gamma_j} = -\partial_{n_k} u|_{\Gamma_k} + \partial_{n_j} u|_{\Gamma_i} + i\Lambda u|_{\Gamma_i} = u|_{\Gamma_j} = u|_{\Gamma_k} \iff -\partial_{n_k} u|_{\Gamma_k} + i\Lambda u|_{\Gamma_k} \iff on \Gamma_j \cap \Gamma_k \forall j, k \qquad on \Gamma_j \cap \Gamma_k \forall j, k$$

$$(\partial_{n_j} u|_{\Gamma'_j} - \imath \Lambda u|_{\Gamma'_j})_{j=1}^{\mathbf{J}} = -\prod_0 ((\partial_{n_k} u|_{\Gamma'_k} + \imath \Lambda u|_{\Gamma'_k})_{k=1}^{\mathbf{J}})$$

where the operator  $\Pi_0$  swaps traces on both sides of each interfaces :  $(v_0, \ldots, v_J) = \Pi_0(u_0, \ldots, u_J) \iff v_j = u_k \text{ on } \Gamma_j \cap \Gamma_k.$ 

Local scattering operators :  

$$S_{0}^{\Gamma_{j}}(\partial_{n_{j}}\psi|_{\Gamma_{j}'} - \imath \Lambda \psi|_{\Gamma_{j}'}) := \partial_{n_{j}}\psi|_{\Gamma_{j}'} + \imath \Lambda \psi|_{\Gamma_{j}'}$$
for  $\Delta \psi + \kappa^{2}\psi = 0$  in  $\Omega_{j}$   
 $\partial_{n}\psi - \imath \kappa \psi = 0$  on  $\partial \Omega_{j} \cap \partial \Omega$ 

#### **Optimized Schwarz**

 $(\mathrm{Id} + \Pi_0 \mathrm{S}_0) p = -\Pi_0(g)$ 

with 
$$p = (\partial_{n_j} u|_{\Gamma'_j} - \imath \Lambda u|_{\Gamma'_j})_{j=1}^{\mathrm{J}}$$

Wave equations :  $(\partial_{n_j}u|_{\Gamma'_j} + \imath \Lambda u|_{\Gamma'_j})_{j=1}^{J} =$   $S_0((\partial_{n_k}u|_{\Gamma'_k} - \imath \Lambda u|_{\Gamma'_k})_{k=1}^{J}) + g$ with  $S_0 := \operatorname{diag}_{j=1...J}(S_0^{\Gamma_j}).$ 

#### The cross-point issue

$$p^{(n+1)} = (1-r)p^{(n)} - r\Pi_0 S_0(p^{(n)}) - r\Pi_0(g)$$

Without cross points, geometric convergence can be obtained for appropriate (operator valued) impedance  $\Lambda$ . In practice, convergence is much slower with cross points i.e. at best algebraic  $||p - p^{(n)}||_{L^2} = O(n^{-\gamma})$ . The root cause seems related to  $\Pi_0$  not being continuous at cross-points in proper trace norms.

This so-called "cross point issue" also arises in the different context of multi-domain boundary integral formulations where Multi-Trace Formalism (MTF) [Claeys & Hiptmair, 2012] now offers a framework that accomodates cross-points, and that is clean as regards function spaces.

**Idea :** use the Multi-Trace Formalism to treat cross-points in OSM. We shall replace  $\Pi_0$  by a non-local counterpart  $\Pi$  that remains continuous no matter the presence of cross points, following the idea first introduced in :



X.Claeys, "Quasi-local multi-trace boundary integral formulations", Numer. Methods Partial Differential Equations, 31(6) :2043–2062, 2015.

## Outline

I Review of the Optimized Schwarz Method

#### II New manner to enforce transmission conditions

**III Numerical results** 

Triangulation conforming with  $\Omega_j$ 's, FE spaces  $V_h(\Omega_j) = \{ \mathbb{P}_k$ -Lagrange on  $\Omega_j \}$ .

| Volume functions                                                                           | Tuples of traces $(\Gamma_j := \partial \Omega_j)$                                           |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $\mathbb{V}_h(\Omega) := \mathrm{V}_h(\Omega_1) 	imes \cdots 	imes \mathrm{V}_h(\Omega_J)$ | $\mathbb{V}_h(\Sigma) := \mathrm{V}_h(\Gamma_1) \times \cdots \times \mathrm{V}_h(\Gamma_J)$ |
| $\mathrm{V}_h(\Omega) := \{ (u_1, \ldots, u_J) \in \mathbb{V}_h(\Omega), \}$               | $\mathrm{V}_h(\Sigma) := \{ \ (p_1, \ldots, p_{\mathrm{J}}) \in \mathbb{V}_h(\Sigma),$       |
| $u_j = u_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j, k \ \}$                         | $p_j = p_k 	ext{ on } \Gamma_j \cap \Gamma_k 	ext{ } orall j, k 	ext{ } \}$                 |



Triangulation conforming with  $\Omega_j$ 's, FE spaces  $V_h(\Omega_j) = \{ \mathbb{P}_k$ -Lagrange on  $\Omega_j \}$ .

| Volume functions                                                                                                                | <b>Tuples of traces</b> ( $\Gamma_j := \partial \Omega_j$ )                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbb{V}_h(\Omega) := \mathrm{V}_h(\Omega_1) 	imes \cdots 	imes \mathrm{V}_h(\Omega_J)$                                      | $\mathbb{V}_h(\Sigma) := \mathbb{V}_h(\Gamma_1) \times \cdots \times \mathbb{V}_h(\Gamma_J)$                                             |
| $V_h(\Omega) := \{ (u_1, \dots, u_J) \in \mathbb{V}_h(\Omega), \\ u_i = u_k \text{ on } \Gamma_j \cap \Gamma_k \forall j, k \}$ | $\mathbb{V}_h(\Sigma) := \{ (p_1, \dots, p_J) \in \mathbb{V}_h(\Sigma), \ p_j = p_k \text{ on } \Gamma_j \cap \Gamma_k \ orall j, k \}$ |

**Piecewise** H<sup>1</sup> Possible jumps through interfaces



Triangulation conforming with  $\Omega_j$ 's, FE spaces  $V_h(\Omega_j) = \{ \mathbb{P}_k \text{-Lagrange on } \Omega_j \}.$ 



Triangulation conforming with  $\Omega_j$ 's, FE spaces  $V_h(\Omega_j) = \{ \mathbb{P}_k \text{-Lagrange on } \Omega_j \}.$ 



Triangulation conforming with  $\Omega_j$ 's, FE spaces  $V_h(\Omega_j) = \{ \mathbb{P}_k \text{-Lagrange on } \Omega_j \}.$ 

| Volume functions                                                                             | Tuples of traces ( $\Gamma_j := \partial \Omega_j$ )                                         |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $\mathbb{V}_h(\Omega) := \mathrm{V}_h(\Omega_1) \times \cdots \times \mathrm{V}_h(\Omega_J)$ | $\mathbb{V}_h(\Sigma) := \mathrm{V}_h(\Gamma_1) \times \cdots \times \mathrm{V}_h(\Gamma_J)$ |
| $V_h(\Omega) := \{ (u_1, \ldots, u_J) \in \mathbb{V}_h(\Omega), \}$                          | $\mathrm{V}_h(\Sigma) := \{ (p_1, \ldots, p_J) \in \mathbb{V}_h(\Sigma), \}$                 |
| $u_j = u_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j, k \}$                             | $p_j = p_k \text{ on } \Gamma_j \cap \Gamma_k \ orall j, k \ \}$                            |

**Impedance = scalar product on traces**  $t_{h}(\mathfrak{p},\mathfrak{q}) = t_{\Gamma_{1}}(\rho_{1},q_{1}) + \dots + t_{\Gamma_{J}}(\rho_{J},q_{J})$  $t_{\Gamma_{j}}(\cdot,\cdot) = \mathbf{any} \text{ scalar product on } V_{h}(\Gamma_{j})$ 

#### Choices of impedance :

- surface mass matrix
- surface order 2 operator
- layer potential, DtN map
- Schur complement

#### Matching at interfaces via orthogonal symmetry

The *t<sub>h</sub>*-orthogonal projection onto the single-trace space  $P_h : \mathbb{V}_h(\Sigma) \to V_h(\Sigma)$  can be applied by solving a (**DDM friendly**!) SPD problem

$$\mathfrak{p} = \mathrm{P}_h(\mathfrak{v}) \quad \Longleftrightarrow \quad \mathfrak{p} \in \mathrm{V}_h(\Sigma) \quad \text{and} \\ t_h(\mathfrak{p}, \mathfrak{w}) = t_h(\mathfrak{v}, \mathfrak{w}) \quad \forall \mathfrak{w} \in \mathrm{V}_h(\Sigma)$$

**Lemma :** The  $t_h$ -orthogonal symmetry  $\Pi := P_h - (Id - P_h) = 2P_h - Id$  satisfies  $\|\Pi(\mathfrak{q})\|_{t_h} = \|\mathfrak{q}\|_{t_h} \forall \mathfrak{q} \in \mathbb{V}_h(\Sigma)$  and, for any  $\mathfrak{v}, \mathfrak{q} \in \mathbb{V}_h(\Sigma)$ ,

 $(\mathfrak{v},\mathfrak{q})\in \mathrm{V}_h(\Sigma) imes\mathrm{V}_h(\Sigma)^\perp \quad \Longleftrightarrow \quad \mathfrak{q}+\imath\mathfrak{v}=\Pi(-\mathfrak{q}+\imath\mathfrak{v}).$ 



Find 
$$u_h \in V_h(\Omega)$$
 and  
 $a(u_h, v_h) = \ell(v_h) \quad \forall v_h \in V_h(\Omega)$ 

$$\downarrow$$

$$\begin{split} \boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) &:= \sum_{j=1}^{\mathrm{J}} \int_{\Omega_j} \nabla \boldsymbol{u} \cdot \nabla \overline{\boldsymbol{v}} - \kappa^2 \boldsymbol{u} \, \overline{\boldsymbol{v}} \, \boldsymbol{d} \, \boldsymbol{x} \\ &- \int_{\partial \Omega_j} \imath \kappa \, \boldsymbol{u} \, \overline{\boldsymbol{v}} \, \boldsymbol{d} \, \sigma \\ \ell(\boldsymbol{v}) &:= \sum_{j=1}^{\mathrm{J}} \int_{\Omega_j} f \overline{\boldsymbol{v}} \, \boldsymbol{d} \, \boldsymbol{x} \qquad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}_h(\Omega) \end{split}$$

Find  $u_h \in \mathbb{V}_h(\Omega)$ ,  $\mathfrak{p}_h \in \mathbb{V}_h(\Sigma)$  and  $\forall v_h \in \mathbb{V}_h(\Omega)$  $a(u_h, v_h) - \imath t_h(u_h|_{\Sigma}, v_h|_{\Sigma}) = t_h(\mathfrak{p}_h, v_h|_{\Sigma}) + \ell(v_h)$  $\mathfrak{p}_h = -\Pi(\mathfrak{p}_h + 2\imath u_h|_{\Sigma})$ 

Find 
$$u_h \in V_h(\Omega)$$
 and  
 $a(u_h, v_h) = \ell(v_h)$   $\forall v_h \in V_h(\Omega)$  $a(u, v) := \sum_{j=1}^{J} \int_{\Omega_j} \nabla u \cdot \nabla \overline{v} - \kappa^2 u \overline{v} \, dx$   
 $- \int_{\partial \Omega_j} \imath \kappa \, u \, \overline{v} \, d\sigma$   
 $\ell(v) := \sum_{j=1}^{J} \int_{\Omega_j} f \overline{v} \, dx$  $u, v \in \mathbb{V}_h(\Omega)$ Find  $u_h \in \mathbb{V}_h(\Omega), \mathfrak{p}_h \in \mathbb{V}_h(\Sigma)$  and  $\forall v_h \in \mathbb{V}_h(\Omega)$   
 $a(u_h, v_h) - \imath t_h(u_h|_{\Sigma}, v_h|_{\Sigma}) = t_h(\mathfrak{p}_h, v_h|_{\Sigma}) + \ell(v_h)$   
 $\mathfrak{p}_h = -\Pi(\mathfrak{p}_h + 2\imath u_h|_{\Sigma})$ Non trivial theorem :  
• relaxing constraints with  
Lagrange multipliers

• Use Π to enforce continuity

Find 
$$u_h \in V_h(\Omega)$$
 and  
 $a(u_h, v_h) = \ell(v_h) \quad \forall v_h \in V_h(\Omega)$ 

$$\downarrow$$

$$\begin{split} \boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) &:= \sum_{j=1}^{\mathrm{J}} \int_{\Omega_j} \nabla \boldsymbol{u} \cdot \nabla \overline{\boldsymbol{v}} - \kappa^2 \boldsymbol{u} \, \overline{\boldsymbol{v}} \, \boldsymbol{d} \, \boldsymbol{x} \\ &- \int_{\partial \Omega_j} \imath \kappa \, \boldsymbol{u} \, \overline{\boldsymbol{v}} \, \boldsymbol{d} \, \sigma \\ \ell(\boldsymbol{v}) &:= \sum_{j=1}^{\mathrm{J}} \int_{\Omega_j} f \overline{\boldsymbol{v}} \, \boldsymbol{d} \, \boldsymbol{x} \qquad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}_h(\Omega) \end{split}$$

Find  $u_h \in \mathbb{V}_h(\Omega)$ ,  $\mathfrak{p}_h \in \mathbb{V}_h(\Sigma)$  and  $\forall v_h \in \mathbb{V}_h(\Omega)$  $a(u_h, v_h) - \imath t_h(u_h|_{\Sigma}, v_h|_{\Sigma}) = t_h(\mathfrak{p}_h, v_h|_{\Sigma}) + \ell(v_h)$  $\mathfrak{p}_h = -\Pi(\mathfrak{p}_h + 2\imath u_h|_{\Sigma})$ 

Find 
$$u_h \in V_h(\Omega)$$
 and  
 $a(u_h, v_h) = \ell(v_h) \quad \forall v_h \in V_h(\Omega)$ 

$$\begin{split} \boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) &:= \sum_{j=1}^{\mathrm{J}} \int_{\Omega_j} \nabla \boldsymbol{u} \cdot \nabla \overline{\boldsymbol{v}} - \kappa^2 \boldsymbol{u} \, \overline{\boldsymbol{v}} \, \boldsymbol{d} \boldsymbol{x} \\ &- \int_{\partial \Omega_j} \imath \kappa \, \boldsymbol{u} \, \overline{\boldsymbol{v}} \, \boldsymbol{d} \sigma \\ \ell(\boldsymbol{v}) &:= \sum_{j=1}^{\mathrm{J}} \int_{\Omega_j} f \overline{\boldsymbol{v}} d \boldsymbol{x} \qquad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}_h(\Omega) \end{split}$$

Find  $u_h \in \mathbb{V}_h(\Omega)$ ,  $\mathfrak{p}_h \in \mathbb{V}_h(\Sigma)$  and  $\forall v_h \in \mathbb{V}_h(\Omega)$  $a(u_h, v_h) - \imath t_h(u_h|_{\Sigma}, v_h|_{\Sigma}) = t_h(\mathfrak{p}_h, v_h|_{\Sigma}) + \ell(v_h)$  $\mathfrak{p}_h = -\Pi(\mathfrak{p}_h + 2\imath u_h|_{\Sigma})$ 

$$\begin{array}{l} \textbf{Skeleton formulation} \\ \mathfrak{p}_h \in \mathbb{V}_h(\Sigma) \text{ and} \\ (\mathrm{Id} + \Pi \mathrm{S}) \mathfrak{p}_h = g_h \end{array}$$

Unknowns *u<sub>h</sub>* are eliminated in all subdomains in parallel by local "ingoing -to-outgoing" solves, applying a (block diagonal) scattering operator.

**Proposition :** Define  $S(\mathfrak{p}) := \mathfrak{p} + 2\iota w|_{\Sigma}$  where  $w \in \mathbb{V}_h(\Omega)$  satisfies  $a(w, v) - \iota t_h(w|_{\Sigma}, v|_{\Sigma}) = t_h(\mathfrak{p}, v|_{\Sigma}) \forall v \in \mathbb{V}_h(\Omega)$ . Then  $\|S(\mathfrak{p})\|_{t_h} \leq \|\mathfrak{p}\|_{t_h}$  for all  $\mathfrak{p} \in \mathbb{V}_h(\Sigma)$ .

#### Theorem :

- **1)** Boundedness :  $\|\operatorname{Id} + \Pi S\|_{t_h} \leq 2$
- **2)** Coercivity :  $\Re e\{t_h(\mathfrak{v}, (\mathrm{Id} + \Pi \mathrm{S})\mathfrak{v})\} \ge \gamma_h^2 \|\mathfrak{v}\|_{t_h}^2 \quad \forall \mathfrak{v} \in \mathbb{V}_h(\Sigma)$

#### **Coercivity constant**

$$\gamma_h := \frac{\alpha}{\lambda_h^+ + 2 C_{sz} \|\boldsymbol{a}\| / \lambda_h^-}$$





#### **Theorem :**

- 1) Boundedness :  $\|\operatorname{Id} + \Pi S\|_{t_h} \leq 2$
- **2)** Coercivity :  $\Re e\{t_h(\mathfrak{v}, (\mathrm{Id} + \Pi S)\mathfrak{v})\} \ge \gamma_h^2 \|\mathfrak{v}\|_{t_h}^2 \quad \forall \mathfrak{v} \in \mathbb{V}_h(\Sigma)$

The exact solution  $\mathfrak{p}^{(\infty)} \in \mathbb{V}_h(\Sigma)$  to the skeleton formulation can be computed with e.g. a Richardson iteration : given  $r \in (0, 1)$ , compute

$$\mathfrak{p}^{(n+1)} = (1-r)\mathfrak{p}^{(n)} - r\Pi \mathrm{S}\mathfrak{p}^{(n)} + rg_h.$$

Proposition : convergence of Richardson's solver

$$\frac{\|\mathfrak{p}^{(n)}-\mathfrak{p}^{(\infty)}\|_{t_h}}{\|\mathfrak{p}^{(0)}-\mathfrak{p}^{(\infty)}\|_{t_h}} \leq (1-2r(1-r)\gamma_h^2)^{n/2}.$$

**Important consequence :** If the  $t_{\Gamma_j}(\cdot, \cdot)$ 's yield norms that are *h*-uniformly equivalent to  $\|\cdot\|_{\mathrm{H}^{1/2}(\Gamma_i)}$ , then we have *h*-uniform geometric convergence.

## Outline

I Review of the Optimized Schwarz Method

II New manner to enforce transmission conditions

**III Numerical results** 

#### Numerical experiments : Helmholtz in 2D

Constant wave number  $\kappa > 0$  in a disc  $\Omega = D(0, 1)$  and impedance boundary condition  $(\partial_n - \iota \kappa) u^{ex} = g$  with  $g(\mathbf{x}) = (\partial_n - \iota \kappa) \exp(-\iota \kappa \mathbf{d} \cdot \mathbf{x})$ , discretization with  $V_h(\Omega) = \mathbb{P}_1$ -Lagrange.

$$u_h^{\text{ex}} \in V_h(\Omega) \quad \text{and} \quad a(u_h^{\text{ex}}, v_h) = \ell(v_h) \quad \forall v_h \in V_h(\Omega)$$
  
$$a(u, v) = \int_{\Omega} \nabla u \cdot \nabla \overline{v} - \kappa^2 u \overline{v} d\mathbf{x} - \imath \kappa \int_{\partial \Omega} u \overline{v} d\sigma$$
  
$$\ell(v) = \int_{\partial \Omega} \overline{v} g d\sigma.$$

With  $u_0^{(0)} \equiv 0$ , we denote  $u_h^{(n)}$  the iterates of the linear solver. The measured error is given by

$$(\text{relative error})^2 = \frac{\sum_{j=1}^{J} \|u_h^{(n)} - u_h^{\text{ex}}\|_{\mathrm{H}^1(\Omega_j)}^2}{\sum_{j=1}^{J} \|u_h^{(0)} - u_h^{\text{ex}}\|_{\mathrm{H}^1(\Omega_j)}^2}.$$

#### **Remarks :**

- global linear solver is GMRes, relative tolerance =  $10^{-8}$
- sequential computations on a 6 core workstation
- FEM & DDM code NIDDL (in Julia) + BemTool (in C++) for integral operators
- exchange operator Π computed with PCG.

#### **Choices of impedance**

Recall that  $t_h(\mathfrak{p},\mathfrak{q}) = t_{\partial\Omega_1}(p_1,q_1) + \cdots + t_{\partial\Omega_J}(p_J,q_J)$ . We tested several choices of local impedances.

**Choice 1 :** M =**surface mass matrix**  $t_{\partial \Omega_j}(p_h, q_h) = \int_{\partial \Omega_j} p_h(\boldsymbol{x}) \overline{q}_h(\boldsymbol{x}) d\sigma(\boldsymbol{x})$ This is the impedance originally considered by Després.

Choice 2 : K = surface H1-scalar product  $t_{\partial\Omega_j}(p_h, q_h) = \int_{\partial\Omega_j} \kappa^{-1} \nabla p_h(\boldsymbol{x}) \cdot \nabla \overline{q}_h(\boldsymbol{x})/2 + \kappa p_h(\boldsymbol{x}) \overline{q}_h(\boldsymbol{x}) d\sigma(\boldsymbol{x})$ 

 $\begin{array}{l} \textbf{Choice 3: W = positive hypersingular integral operator} \\ t_{\partial\Omega_j}(p_h, q_h) = \int_{\partial\Omega_j \times \partial\Omega_j} \exp(-\kappa | \pmb{x} - \pmb{y} |) / (4\pi | \pmb{x} - \pmb{y} |) [ \\ \kappa^{-1} \, \pmb{n}(\pmb{x}) \times \nabla_{\partial\Omega_j} p_h(\pmb{x}) \cdot \pmb{n}(\pmb{y}) \times \nabla_{\partial\Omega_j} q_h(\pmb{y}) \\ + \kappa \, \pmb{n}(\pmb{x}) \cdot \pmb{n}(\pmb{y}) p_h(\pmb{x}) q_h(\pmb{y}) \, ] d\sigma(\pmb{x}, \pmb{y}) \end{array}$ 

**Choice 4** :  $\Lambda =$  **schur complement**( $\simeq$  discrete DtN) associated with the interior numerical solution to the **positive** problem  $-\Delta v + \kappa^2 v = 0$  in  $\Omega_i$ .

## **Mesh partitionning**

Meshes were generated a priori on the whole computational domain with GMSH. Partitionning is obtained a posteriori with Metis.



## **Convergence history**

**—** M

**—** К

**—** W

+ Λ

600

400

$$\kappa = 5, \quad \lambda = 2\pi/\kappa \simeq 1.25$$
  
 $N_{\lambda} = \lambda/h = 40$  points/wavelength.



## Iteration count vs. $N_{\lambda} = \text{points/wavelength}$

 $\kappa = 1$ ,  $\lambda = 2\pi/\kappa \simeq 6.28$ ,  $N_{\lambda} = \lambda/h$ , 4 subdomains. Relative tolerance of GMRes =  $10^{-8}$ ,  $\emptyset = no$  DDM.



## Iteration count vs. J = number of subdomains

 $\kappa = 5$ ,  $\lambda = 2\pi/\kappa \simeq 1.26$ ,  $N_{\lambda} = \lambda/h = 40$ . Relative tolerance of GMRes =  $10^{-8}$ .



## Iteration count vs. $\kappa =$ wavenumber

 $\lambda = 2\pi/\kappa$ ,  $N_{\lambda} = \lambda/h = 30$ , 4 subdomains. Relative tolerance of GMRes =  $10^{-8}$ ,  $\emptyset$  =no DDM.



## Conclusion

We proposed a new way of imposing transmission conditions involving another choice of exchange operator. This yields *h*-uniform convergence of iterative solvers, and accomodates cross-points.

In addition this approach appears as a natural generalization of the classical OSM à la Després, and allows to propose a full theoretical framework, which was not available so far.

#### Also available :

- other boundary conditions (Dirichlet, Neumann),
- other equations (3D Helmholtz, Maxwell),
- analysis of non-infsup-stable impedances.

#### **Future investigations**

- fine properties of the exchange operator
- large scale optimized parallel implementation
- multi-level strategy
- non-conforming DDM

# Thank you for your attention Questions?



X.Claeys, F.Collino, P.Joly and E.Parolin, "A discrete domain decomposition method for acoustics with uniform exponential rate of convergence using non-local impedance operators", proceedings of the DD25 conference.



X.Claeys, "A new variant of the Optimised Schwarz Method for arbitrary non-overlapping subdomain partitions", accepted in ESAIM M2AN, preprint Arxiv 1910.05055



X.Claeys and E.Parolin, "Robust treatment of cross points in Optimized Schwarz Methods", submitted, preprint Arxiv 2003.06657